On Runge-Kutta Methods for Parabolic Problems with Time-Dependent Coefficients

نویسندگان

  • Ohannes A. Karakashian
  • OHANNES A. KARAKASHIAN
چکیده

Galerkin fully discrete approximations for parabolic equations with time-dependent coefficients are analyzed. The schemes are based on implicit Runge-Kutta methods, and are coupled with preconditioned iterative methods to approximately solve the resulting systems of linear equations. It is shown that for certain classes of Runge-Kutta methods, the fully discrete equations exhibit parallel features that can be exploited to reduce the final execution time to that of a low-order method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galerkin/Runge-Kutta Discretizations for Parabolic Equations with Time-Dependent Coefficients

A new class of fully discrete Galerkin/Runge-Kutta methods is constructed and analyzed for linear parabolic initial-boundary value problems with time-dependent coefficients. Unlike any classical counterpart, this class offers arbitrarily high order of convergence while significantly avoiding what has been called order reduction. In support of this claim, error estimates are proved and computati...

متن کامل

Multigrid Methods for Implicit Runge-Kutta and Boundary Value Method Discretizations of Parabolic PDEs

Sophisticated high order time discretization methods, such as implicit Runge–Kutta and boundary value methods, are often disregarded when solving time dependent partial differential equations, despite several appealing properties. This is mainly because it is considered hard to develop efficient methods for the more complex linear systems involved. We show here that for implicit Runge–Kutta and...

متن کامل

Stability of Runge-Kutta methods for abstract time-dependent parabolic problems: The Hölder case

We consider an abstract time-dependent, linear parabolic problem u′(t) = A(t)u(t), u(t0) = u0, where A(t) : D ⊂ X → X, t ∈ J , is a family of sectorial operators in a Banach space X with time-independent domain D. This problem is discretized in time by means of an A(θ) strongly stable Runge-Kutta method, 0 < θ < π/2. We prove that the resulting discretization is stable, under the assumption ‖(A...

متن کامل

Stability of Runge-Kutta methods for quasilinear parabolic problems

We consider a quasilinear parabolic problem u′(t) = Q ( u(t) ) u(t), u(t0) = u0 ∈ D, where Q(w) : D ⊂ X → X, w ∈ W ⊂ X, is a family of sectorial operators in a Banach space X with fixed domain D. This problem is discretized in time by means of a strongly A(θ)-stable, 0 < θ ≤ π/2, Runge–Kutta method. We prove that the resulting discretization is stable, under some natural assumptions on the depe...

متن کامل

Numerical homogenization methods for parabolic monotone problems

In this paper we review various numerical homogenization methods for monotone parabolic problems with multiple scales. The spatial discretisation is based on finite element methods and the multiscale strategy relies on the heterogeneous multiscale method. The time discretization is performed by several classes of Runge-Kutta methods (strongly A−stable or explicit stabilized methods). We discuss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010